Light Sheet 3D Printing

Yan Meng EDMX-FIMAP 2023.03.20

Article

Xolography for linear volumetric 3D printing

https://doi.org/10.1038/s41586-020-3029-7

Martin Regehly^{1⊠}, Yves Garmshausen², Marcus Reuter², Niklas F. König², Eric Israel³, Damien P. Kelly², Chun-Yu Chou², Klaas Koch², Baraa Asfari¹ & Stefan Hecht^{4,5,6} ⊠

Received: 5 June 2020

Accepted: 2 November 2020

¹Technology Department, Brandenburg University of Applied Science, Brandenburg, Germany. ²xolo GmbH, Berlin, Germany. ³Institute of Materials Science, TU Dresden, Dresden, Germany. ⁴Department of Chemistry and IRIS Adlershof, Humboldt-Universität zu Berlin, Berlin, Germany. ⁵DWI—Leibniz Institute for Interactive Materials, Aachen, Germany. ⁵Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany. ^{Se}-mail: regehly@th-brandenburg.de; hecht@dwi.rwth-aachen.de

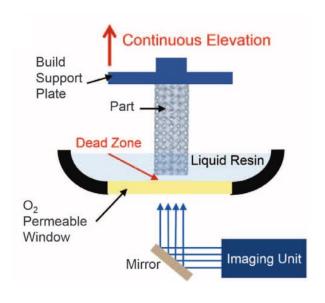
620 | Nature | Vol 588 | 24/31 December 2020

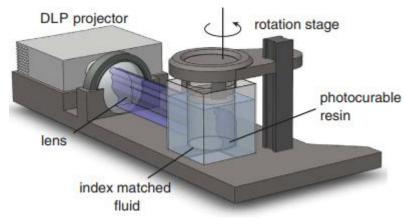
Article

https://doi.org/10.1038/s41566-022-01081-0

Light-sheet 3D microprinting via two-colour two-step absorption

Received: 3 February 2022

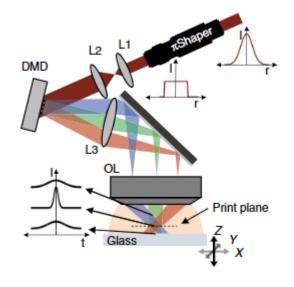

Vincent Hahn ^{1,2} , Pascal Rietz ^{1,2}, Frank Hermann , Patrick Müller ^{2,3},


Accepted: 29 August 2022

Christopher Barner-Kowollik^{2,4}, Tobias Schlöder², Wolfgang Wenzel², Eva Blasco © ^{5,6} and Martin Wegener © ^{1,2}

¹Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany. ²Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany. ³Nanoscribe GmbH & Co. KG, Eggenstein-Leopoldshafen, Germany. ⁴Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, Queensland, Australia. ⁵Institute for Molecular Systems Engineering and Advanced Materials, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany. ⁶Institute of Organic Chemistry, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany. □ Ce-mail: vincent.hahn@kit.edu

Issue to Address


stereolithography

Science 2015, 347, 1349

computed axial lithography

Science 2015, 347, 1349

high speed low resolution (~100 μm)

two-photon lithographyhy

Light Sci. Appl. 2021, 10, 199

high resolution (~1 μm) low speed & high cost

Article

Xolography for linear volumetric 3D printing

https://doi.org/10.1038/s41586-020-3029-7

Martin Regehly^{1⊠}, Yves Garmshausen², Marcus Reuter², Niklas F. König², Eric Israel³, Damien P. Kelly², Chun-Yu Chou², Klaas Koch², Baraa Asfari¹ & Stefan Hecht^{4,5,6} ⊠

Received: 5 June 2020

Accepted: 2 November 2020

¹Technology Department, Brandenburg University of Applied Science, Brandenburg, Germany. ²xolo GmbH, Berlin, Germany. ³Institute of Materials Science, TU Dresden, Dresden, Germany. ⁴Department of Chemistry and IRIS Adlershof, Humboldt-Universität zu Berlin, Berlin, Germany. ⁵DWI—Leibniz Institute for Interactive Materials, Aachen, Germany. ⁶Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany. e-mail: regehly@th-brandenburg.de; hecht@dwi.rwth-aachen.de

620 | Nature | Vol 588 | 24/31 December 2020

Article

https://doi.org/10.1038/s41566-022-01081-0

Light-sheet 3D microprinting via two-colour two-step absorption

Received: 3 February 2022

Accepted: 29 August 2022

Vincent Hahn ^{1,2} M, Pascal Rietz^{1,2}, Frank Hermann¹, Patrick Müller^{2,3}, Christopher Barner-Kowollik^{2,4}, Tobias Schlöder², Wolfgang Wenzel², Eva Blasco ^{1,6} and Martin Wegener ^{1,2}

¹Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany. ²Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany. ⁴Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, Queensland, Australia. ⁵Institute for Molecular Systems Engineering and Advanced Materials, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany. ⁶Institute of Organic Chemistry, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany. [©]Re-mail: vincent.hahn@kit.edu

Illustration of Xolography

dormant state latent state Polymerization dual-colour photoinitiator orthogonally crossing(X) light

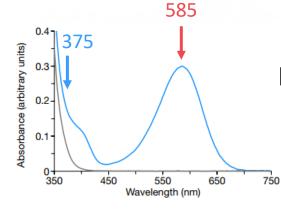
Requirements for Light-sheet Printing

latent state dormant state Polymerization dual-colour photoinitiator orthogonally crossing(X) light

- \triangleright Polymerization should be induced by λ_1 and λ_2 together, but by single light(non-overlapping adsorption regions)
- Photoinitiator in latent state decays back to the dormant state in due time
- Adsorption of dormant state should be sufficiently low for a large enough intensity through whole vessel

Property of Photoinitiator

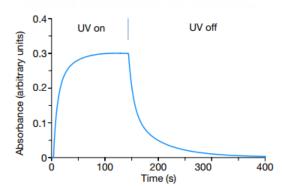
dormant state


latent state

2

H₃C CH₃ H₃C CH₃

spiropyran classical photoswitch


benzophenone common phothoinitiator

Polymerization

black: dormant state

blue: latent state

thermal half-life 6 s at 25 °C

3D Printer Assembly

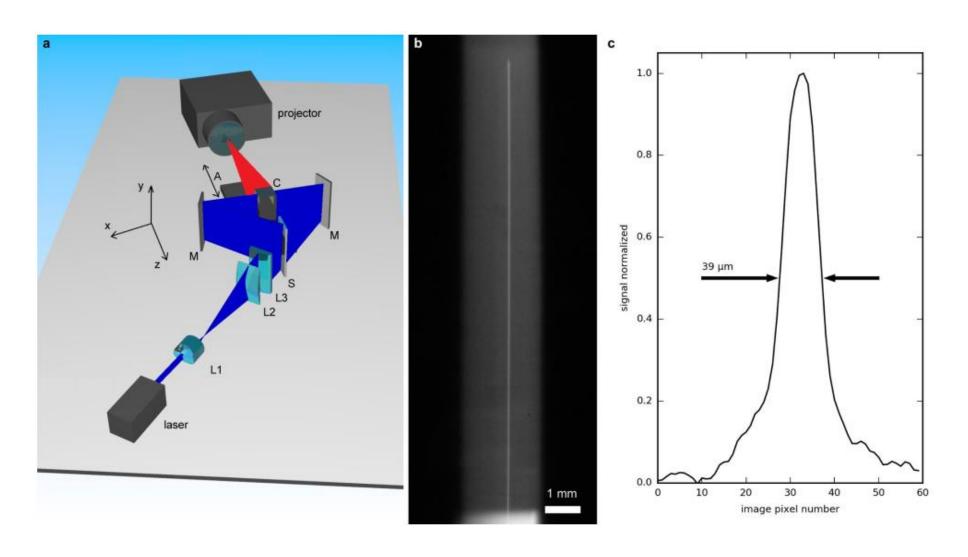
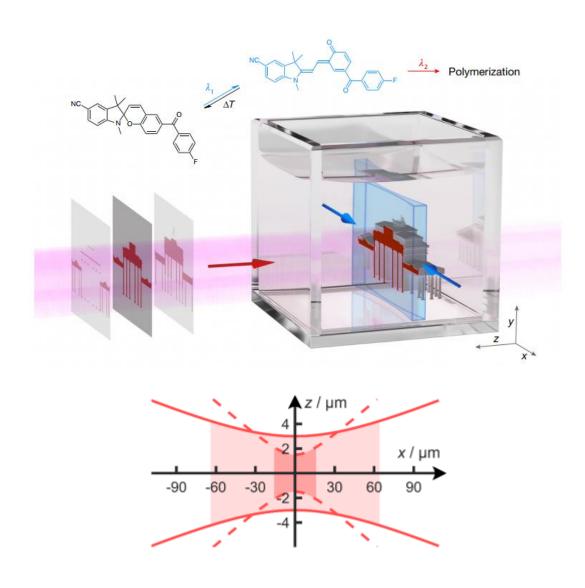
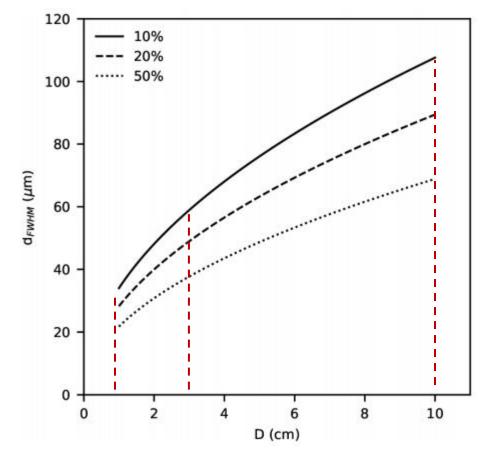
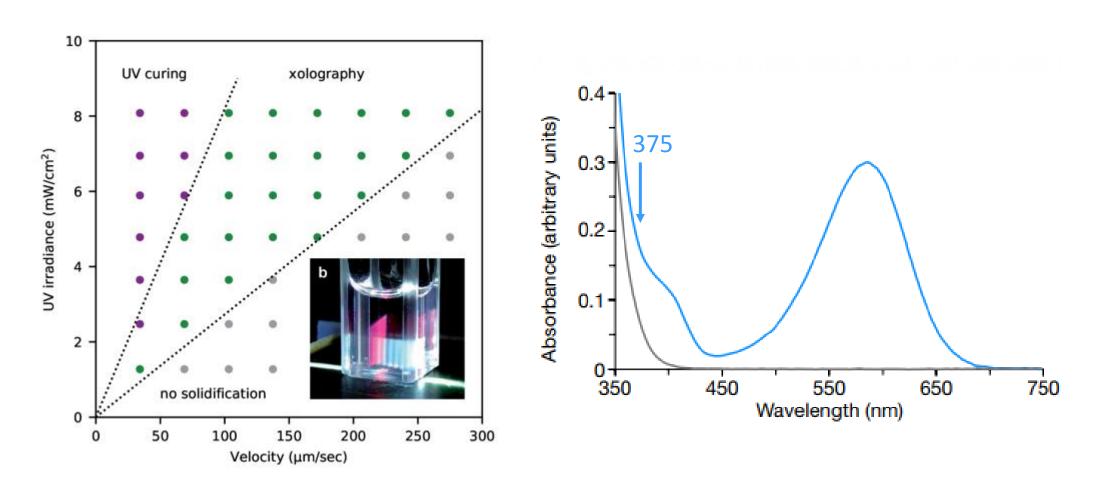
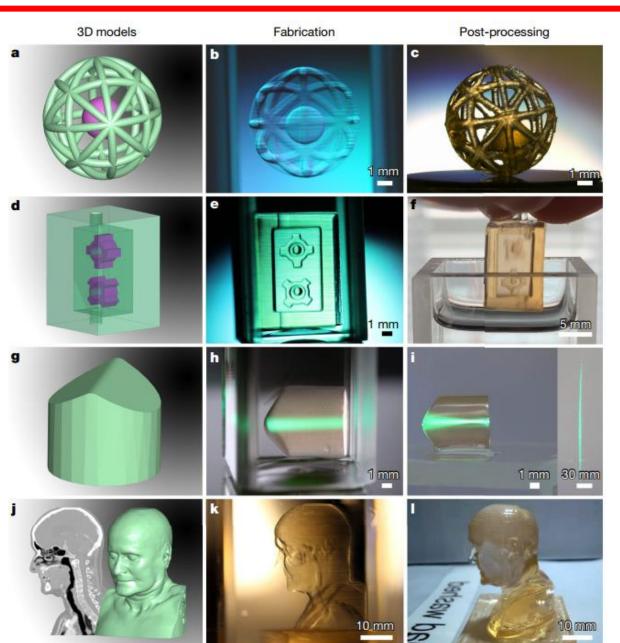
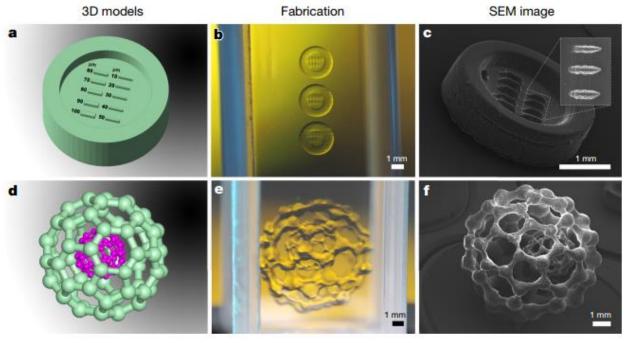




image pixel size of 21 μ m \times 21 μ m at the focus position (resolution in x and y direction) 39 μ m FWHM light sheet waist size can be realized for printing in 10-cm-sized vessel


Optimal Light Sheet Waist Widths


FWHM waist sizes against volume depth 34 μm for 1 cm, 59 μm for 3 cm,108 μm for 10 cm (resolution in z direction)


Suitable UV Power and Velocity

UV power too high: undesired solidification velocity too high: not enough solidification final choice: 136.8 μ m/s with 7 mW/cm²

Various Printed Structures

resolution can reach 25 μm in the x and y directions and 50 μm in the z direction

printing speed can reach 55 mm³/s one minute in 10 mm cuvettes

Xolography for linear volumetric 3D printing

https://doi.org/10.1038/s41586-020-3029-7

Martin Regehly^{1⊠}, Yves Garmshausen², Marcus Reuter², Niklas F. König², Eric Israel³, Damien P. Kelly², Chun-Yu Chou², Klaas Koch², Baraa Asfari¹ & Stefan Hecht^{4,5,6} ⊠

Received: 5 June 2020

Accepted: 2 November 2020

¹Technology Department, Brandenburg University of Applied Science, Brandenburg, Germany. ²xolo GmbH, Berlin, Germany. ³Institute of Materials Science, TU Dresden, Dresden, Germany. ⁴Department of Chemistry and IRIS Adlershof, Humboldt-Universität zu Berlin, Berlin, Germany. ⁵DWI—Leibniz Institute for Interactive Materials, Aachen, Germany. ⁶Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany. ⁶E-mail: regehly@th-brandenburg.de; hecht@dwi.rwth-aachen.de

620 | Nature | Vol 588 | 24/31 December 2020

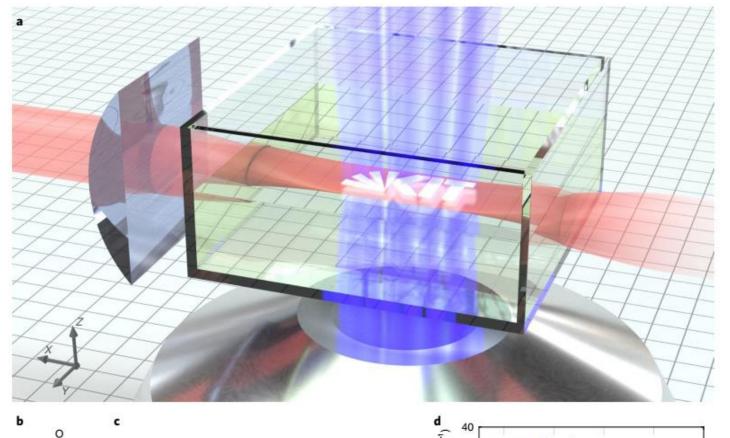
Article

https://doi.org/10.1038/s41566-022-01081-0

Light-sheet 3D microprinting via two-colour two-step absorption

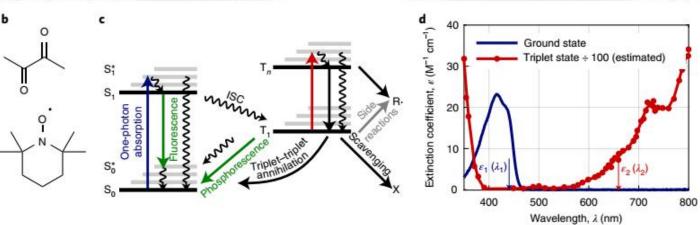
Received: 3 February 2022

Vincent Hahn ^{1,2} , Pascal Rietz^{1,2}, Frank Hermann¹, Patrick Müller^{2,3},


Accepted: 29 August 2022

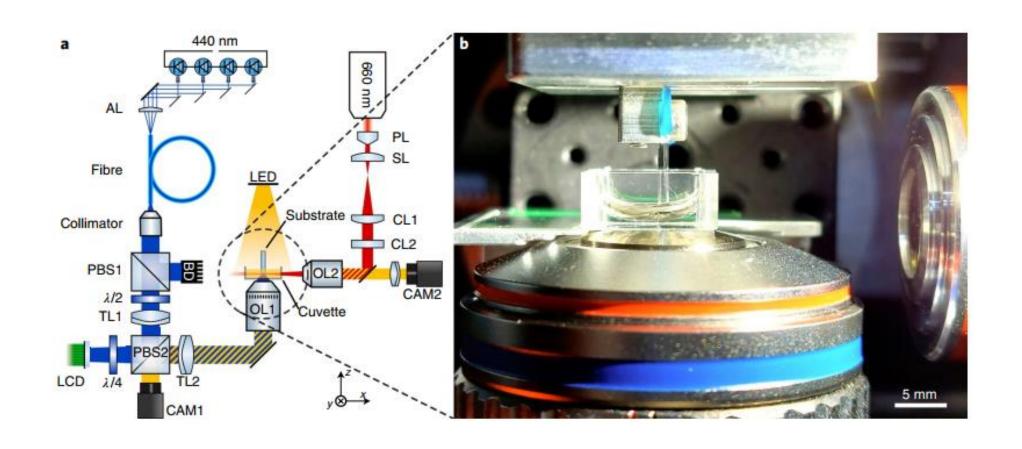
Christopher Barner-Kowollik^{2,4}, Tobias Schlöder², Wolfgang Wenzel²,

Eva Blasco ® 5.6 and Martin Wegener ® 1.2

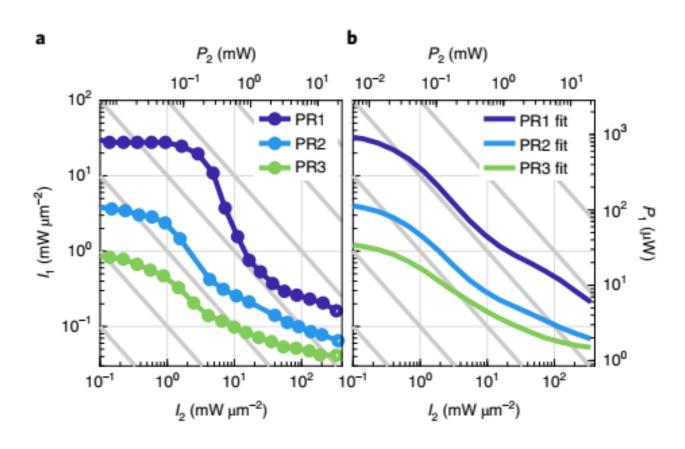

¹Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany. ²Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany. ⁴Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, Queensland, Australia. ⁵Institute for Molecular Systems Engineering and Advanced Materials, Ruprecht-Karls-Universität Heidelberg, Germany. ⁶Institute of Organic Chemistry, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany. [∞]E-mail: vincent.hahn@kit.edu

Light Sheet by Two-colour Two-step Absorption

2,3-butanedione (BA) photoinitiator

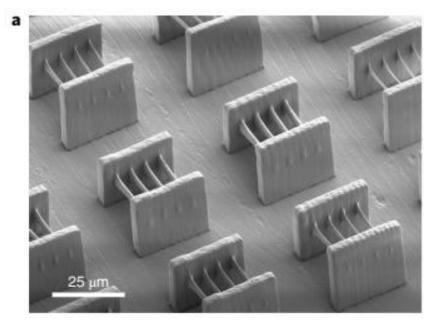

TEMPO radical scavenger

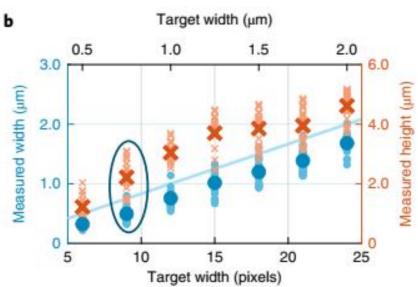
non-overlapping adsorption regions

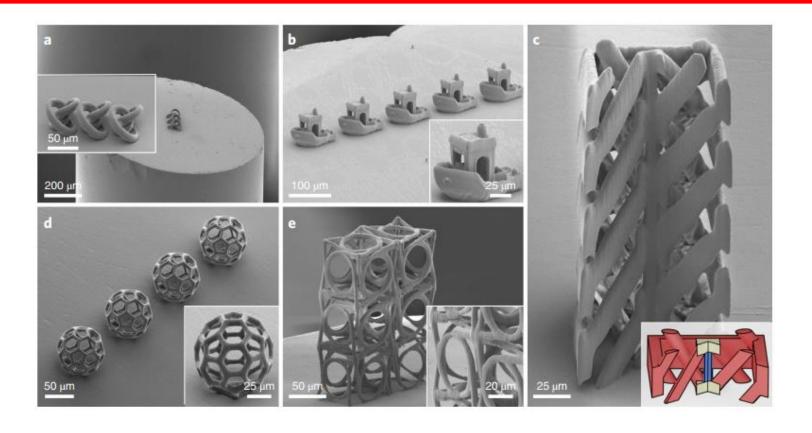

intermediate-state lifetime 100 μs

3D Printer Assembly

LCD has $1,920 \times 1,080$ pixels stationary light sheet and projected light

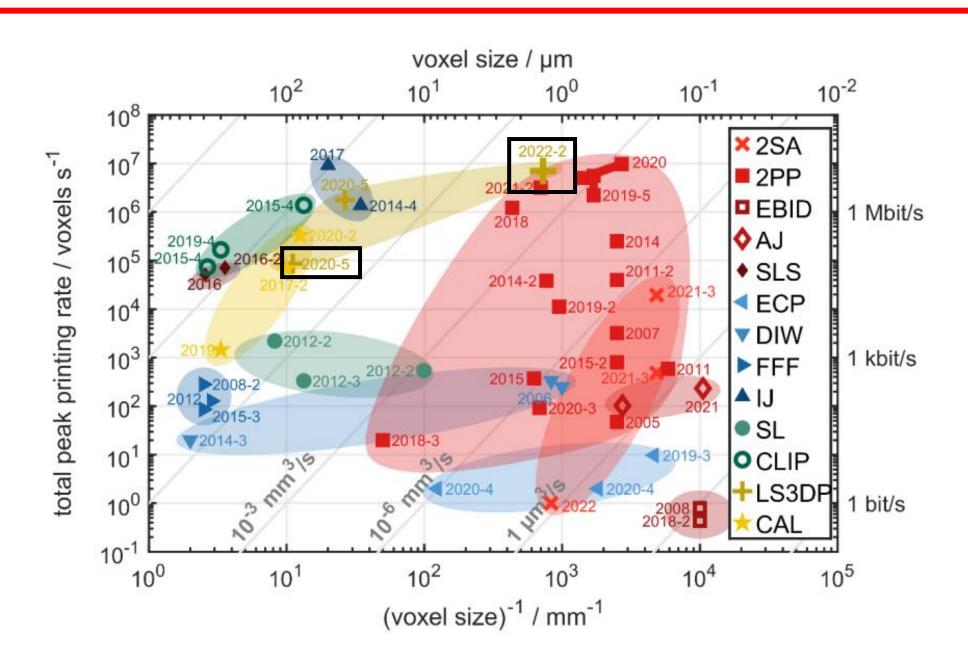

Threshold Intensity for Solidfication




Name	Monomer	[BA]	[TEMPO]	Viscosity
PR1	TMPTA	O.11M (1.1wt.%)	0.011M (0.2 wt.%)	0.1PaS
PR2	PETA	O.11M (1.1wt.%)	0.011M (0.2 wt.%)	1.0 PaS
PR3	DPEHA	0.11M (1.1wt.%)	0.011M (0.2 wt.%)	6.0PaS

threshold intensity of bule light I_1 vs different I_2 PR1-3: photoresin with different monomer final choice: PR3(little change in refractive index), I_1 = 0.16 mW/ μ m², I_2 = 3 mW/ μ m²

Printed Various Structures



100% yield for the nine-pixel-wide lines resolution can reach 0.5 μm in width and 2.2 μm in height 1,920 \times 1,080 pixels corresponds to 3.3 \times 10^4 voxels printing speed can reach 7 \times 10^6 voxels/s, 3.85 \times 10^6 $\mu m^3/s$

Comparison of Different Methods

